Linear algebra - Solutions to practice problems

1. Compute the following, or state that it is undefined.
(a) $\left[\begin{array}{cc}1 & -2 \\ 3 & 5\end{array}\right]$
(b) Not defined.
(c) $\left[\begin{array}{cc}17 & 8 \\ 19 & -8\end{array}\right]$
(d) Not defined.
(e) Not defined.
(f) The inverse is $\left[\begin{array}{ccc}-7 & 5 & 3 \\ 3 & -2 & -2 \\ 3 & -2 & -1\end{array}\right]$
2. Let $A=\left[\begin{array}{lll}1 & 4 & -2 \\ 2 & 7 & -1 \\ 2 & 9 & -7\end{array}\right]$.
(a) A basis is $\left\{\left[\begin{array}{c}-10 \\ 3 \\ 1\end{array}\right]\right\}$. (any non-zero multiple of this vector is also a basis)
(b) The solutions are

$$
\mathbf{x}=\left[\begin{array}{c}
-36 \\
10 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-10 \\
3 \\
1
\end{array}\right]
$$

where r is any real number.
(c) The rank of A is 2 .
(d) The nullspace is the span $\operatorname{sp}\left(\left[\begin{array}{c}-10 \\ 3 \\ 1\end{array}\right]\right)$. (same as part (a))
(e) A basis for the column space is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}4 \\ 7 \\ 9\end{array}\right]\right\}$.
$\mathbf{3}$ Let $A=\left[\begin{array}{llll}2 & 3 & 1 & 4 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 3\end{array}\right]$ and suppose that the reduced row-echelon form of A is $H=\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ (you can
check this if you want to practice row reduction).
(a) A basis for the row space is $\left\{\left[\begin{array}{llll}1 & 0 & 2 & 0\end{array}\right],\left[\begin{array}{llll}0 & 1 & -1 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]\right\}$.
(b) A basis for the column space is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 2 \\ 3\end{array}\right]\right\}$
(c) A basis for the nullspace is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
(d) The rank of A is 3 .
(e) Not every system $A \mathbf{x}=\mathbf{b}$ is consistent. When we row reduce $[A \mid \mathbf{b}] \sim[H \mid \mathbf{c}]$, the last entry of \mathbf{c} has to vanish. In terms of $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ this means that the system is only consistent if $-b_{2}-b_{3}+b_{4}=0$ (to see this you have to row reduce $[A \mid \mathbf{b}])$.
4. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be a linear transformation such that $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right]$.
(a) $T\left(\left[\begin{array}{l}3 \\ 6\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$.
(b) The standard matrix representation of T is $A=\left[\begin{array}{cc}2 & -1 \\ 0 & 0 \\ -5 & 3\end{array}\right]$.
(c) The rank of T is 2 .
(d) The kernel of T is $\{\mathbf{0}\}$. (we know that $\operatorname{rank}(T)+\operatorname{dim} \operatorname{ker}(T)=2$, so part (c) tells us that the kernel is zero dimensional)
5. Write down the standard matrix representations for the following linear transformations.
(a) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
(c) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
6. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent vectors in \mathbf{R}^{5}.
(a) A basis is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(b) Let $\mathbf{w}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{w}_{2}=\mathbf{v}_{2}+\mathbf{v}_{3}$ and $\mathbf{w}_{3}=\mathbf{v}_{1}-\mathbf{v}_{3}$.
(i) No, $\mathbf{w}_{1}-\mathbf{w}_{2}-\mathbf{w}_{3}=\mathbf{0}$, so $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ are not linearly independent.
(ii) Yes. Since $\mathbf{w}_{3}=\mathbf{w}_{1}-\mathbf{w}_{2}$, we have $\mathrm{sp}\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)=\mathbf{s p}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right)$. Also, $\mathbf{w}_{1}, \mathbf{w}_{2}$ are linearly independent since if

$$
r_{1} \mathbf{w}_{1}+r_{2} \mathbf{w}_{2}=\mathbf{0},
$$

then

$$
r_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+r_{2}\left(\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}\right)=\mathbf{0},
$$

so

$$
r_{1} \mathbf{v}_{1}+\left(r_{1}+r_{2}\right) \mathbf{v}_{2}+r_{2} \mathbf{v}_{3}=\mathbf{0}
$$

But $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent, so we must have $r_{1}, r_{2}=0$.
(iii) $2 \mathbf{v}_{1}+\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{3}=2 \mathbf{w}_{1}-\mathbf{w}_{2}$.
7. Which of the following are subspaces of \mathbf{R}^{3} ? For those which are subspaces, find a basis.
(a) Not a subspace since $[1,0,1],[0,1,1]$ are in the set, but their sum $[1,1,2]$ is not in the set.
(b) Not a subspace since $[1,-1,0]$ is in the set, but the scalar multiple $[-1,1,0]$ is not in the set. .
(c) This is a subspace with basis $\{[1,0,0],[0,1,0]\}$. .
8.
(a) Yes. To see this, row reduce the matrix whose columns are the given vectors.
(b) It is not possible. If you form the matrix A with columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ and row reduce, there will be a column with no pivot since A has only 3 rows (the vectors are in \mathbf{R}^{3}).
(c) For example $[1,0,0,0],[0,1,0,0],[0,0,1,0],[1,1,1,0]$. (there are many other possibilities)

