Linear algebra - Solutions to practice problems

1. Compute the following, or state that it is undefined.

(a)
$$\begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$$

(b) Not defined.

(c)
$$\begin{bmatrix} 17 & 8\\ 19 & -8 \end{bmatrix}$$

- (d) Not defined.
- (e) Not defined.
- (f) The inverse is $\begin{bmatrix} -7 & 5 & 3\\ 3 & -2 & -2\\ 3 & -2 & -1 \end{bmatrix}$ 2. Let $A = \begin{bmatrix} 1 & 4 & -2\\ 2 & 7 & -1\\ 2 & 9 & -7 \end{bmatrix}$. (a) A basis is $\left\{ \begin{bmatrix} -10\\ 3\\ 1 \end{bmatrix} \right\}$. (any non-zero multiple of this vector is also a basis)
 - (b) The solutions are

$$\mathbf{x} = \begin{bmatrix} -36\\10\\0 \end{bmatrix} + r \begin{bmatrix} -10\\3\\1 \end{bmatrix},$$

where r is any real number.

(c) The rank of A is 2.

(d) The nullspace is the span sp
$$\left(\begin{bmatrix} -10\\3\\1 \end{bmatrix} \right)$$
. (same as part (a))
(e) A basis for the column space is $\left\{ \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 4\\7\\9 \end{bmatrix} \right\}$.

 $\mathbf{3} \text{ Let } A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 3 \end{bmatrix} \text{ and suppose that the reduced row-echelon form of } A \text{ is } H = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ (you can } A \text{ is } H = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

check this if you want to practice row reduction).

(a) A basis for the row space is $\{\begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}\}$.

- (b) A basis for the column space is $\begin{cases} \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\3 \end{bmatrix} \end{cases}$ (c) A basis for the nullspace is $\begin{cases} \begin{bmatrix} -2\\1\\1\\0 \end{bmatrix} \end{cases}$.
- (d) The rank of A is 3.
- (e) Not every system $A\mathbf{x} = \mathbf{b}$ is consistent. When we row reduce $[A \mid \mathbf{b}] \sim [H \mid \mathbf{c}]$, the last entry of \mathbf{c} has to vanish. In terms of $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ this means that the system is only consistent if $-b_2 b_3 + b_4 = 0$ (to see this you have to row reduce $[A \mid \mathbf{b}]$).

4. Let $T : \mathbf{R}^2 \to \mathbf{R}^3$ be a linear transformation such that $T\left(\begin{bmatrix} 2\\3 \end{bmatrix} \right) = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ and $T\left(\begin{bmatrix} 1\\3 \end{bmatrix} \right) = \begin{bmatrix} -1\\0\\4 \end{bmatrix}$.

- (a) $T\left(\begin{bmatrix}3\\6\end{bmatrix}\right) = \begin{bmatrix}0\\0\\3\end{bmatrix}$.
- (b) The standard matrix representation of T is $A = \begin{bmatrix} 2 & -1 \\ 0 & 0 \\ -5 & 3 \end{bmatrix}$.
- (c) The rank of T is 2.
- (d) The kernel of T is $\{0\}$. (we know that rank(T) + dim ker(T) = 2, so part (c) tells us that the kernel is zero dimensional)
- 5. Write down the standard matrix representations for the following linear transformations.
- (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. (c) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- **6.** Suppose that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent vectors in \mathbf{R}^5 .
 - (a) A basis is $\{\mathbf{v}_1, \mathbf{v}_2\}$.
 - (b) Let $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3$ and $\mathbf{w}_3 = \mathbf{v}_1 \mathbf{v}_3$.
 - (i) No, $\mathbf{w}_1 \mathbf{w}_2 \mathbf{w}_3 = \mathbf{0}$, so $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ are not linearly independent.

(ii) Yes. Since $\mathbf{w}_3 = \mathbf{w}_1 - \mathbf{w}_2$, we have $\operatorname{sp}(\mathbf{w}_1, \mathbf{w}_2) = \operatorname{sp}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$. Also, $\mathbf{w}_1, \mathbf{w}_2$ are linearly independent since if

$$r_1\mathbf{w}_1+r_2\mathbf{w}_2=\mathbf{0},$$

then

$$r_1(\mathbf{v}_1 + \mathbf{v}_2) + r_2(\mathbf{v}_2 + \mathbf{v}_3) = \mathbf{0},$$

 \mathbf{SO}

$$r_1 \mathbf{v}_1 + (r_1 + r_2) \mathbf{v}_2 + r_2 \mathbf{v}_3 = \mathbf{0}.$$

But $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent, so we must have $r_1, r_2 = 0$.

- (iii) $2\mathbf{v}_1 + \mathbf{v}_2 \mathbf{v}_3 = 2\mathbf{w}_1 \mathbf{w}_2$.
- 7. Which of the following are subspaces of \mathbb{R}^3 ? For those which are subspaces, find a basis.
 - (a) Not a subspace since [1, 0, 1], [0, 1, 1] are in the set, but their sum [1, 1, 2] is not in the set.
 - (b) Not a subspace since [1, -1, 0] is in the set, but the scalar multiple [-1, 1, 0] is not in the set.
 - (c) This is a subspace with basis $\{[1, 0, 0], [0, 1, 0]\}$.

8.

- (a) Yes. To see this, row reduce the matrix whose columns are the given vectors.
- (b) It is not possible. If you form the matrix A with columns $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ and row reduce, there will be a column with no pivot since A has only 3 rows (the vectors are in \mathbf{R}^3).
- (c) For example [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 1, 1, 0]. (there are many other possibilities)